
Binary	Search

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.3

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• Binary	search	is	a	classic	example	that	
illustrates	general	recursion

• We	will	look	at	a	function	for	binary	search

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– explain	what	binary	search	is	and	when	it	is	
appropriate

– explain	how	the	standard	binary	search	works,	
and	how	it	fits	into	the	framework	of	general	
recursion

– write	variations	on	a	binary	search	function

3

Binary	Search

• You	probably	learned	about	binary	search	in	
an	array:	given	an	array	A[0:N] of	increasing	
values	and	a	target	tgt,	find	an	i such	that	A[i]
=	tgt,	or	else	report	not	found.

4

Arrays	can	be	modeled	as	functions

• Racket	has	arrays	(called	vectors),	but	we	
don't	need	them.

• Instead	of	having	an	array,	we'll	have	a	
function		

f	:	[0..N]	->	Integer
which	will	give	the	value	of	the	array	at	any	index.

• We	will	require	that	f	be	non-decreasing:		
that	is:

i ≤	j	implies	f(i)	≤	f(j)

5

Let's	do	the	obvious	generalization

• Clearly	the	0	and	N	don't	matter,	so	we'll	add	
them	as	arguments	to	our	function.

6

Contract	and	Purpose	Statement
;; binary-search-loop
;; : NonNegInt NonNegInt
;; (NonNegInt -> Integer)
;; Integer
;; -> MaybeNonNegInt
;; GIVEN: two numbers lo and hi, a function f,
;; and a target tgt
;; WHERE: f is monotonic
;; (ie, i≤j implies f(i)≤f(j))
;; RETURNS: a number k such that lo ≤ k ≤ hi
;; and f(k) = tgt if there is such a k,
;; otherwise false.

7

Once	we've	written	that,	we	can	write	
the	main	function

;; binary-search :
;; NonNegInt (NonNegInt -> Integer) Integer
;; -> MaybeNonNegInt
;; GIVEN: a number N,
;; a function f : NonNegInt -> Integer,
;; and a number tgt
;; WHERE: f is monotonic (ie, i ≤ j implies f(i) ≤ f(j))
;; RETURNS: a number k such that 0 ≤ k ≤ N
;; and f(k) = tgt if there is such a k,
;; otherwise false.

;; STRATEGY: call a more general function
(define (binary-search N f tgt)
(binary-search-loop 0 N f tgt))

8

What	are	the	easy	cases	for	binary-
search-loop?

• if	lo>hi,	the	search	range	[lo,hi]	is	empty,	so	
the	answer	must	be	false.

• if	lo=hi,	the	search	range	has	size	1,	so	it's	
easy	to	figure	out	the	answer.

9

What	if	the	search	range	is	larger?

• Insight	of	binary	search:	divide	it	in	half.
• At	this	point	we	know	that	lo	<	hi.
• Choose	a	midpoint	p in	[lo,hi] .
– p doesn't	have	to	be	close	to	the	center– any	
value	in	[lo,hi]	will	lead	to	a	correct	program

– but	choosing	p to	be	near	the	center	means	that	
the	search	space	is	divided	in	half	every	time,	so	
you'll	only	need	about	log₂(hi-lo)	steps.

10

What	are	the	cases?

• f(p)	<	tgt
– so	we	can	rule	out	p,	and	all	values	less	than	p	
(because	if	p'	<	p,	f(p')	≤	f(p)	<	tgt).

– So	the	answer	k,	if	it	exists,	is	in	[p+1,	hi]
• tgt <	f(p)
– so	we	can	rule	out	p	and	all	values	greater	than	p,	
because	if	p	<	p',	tgt <	f(p)	≤	f(p').

– So	the	answer	k,	if	it	exists,	is	in	[lo,p-1]
• tgt =	f(p)
– then	p	is	our	desired	k.

11

As	code:
;; STRATEGY: recur on either left or right half of [lo,hi].

(define (binary-search-loop lo hi f tgt)
(cond

[(> lo hi) ; the search range is empty, return false
false]

[(= lo hi) ; the search range has size 1
(if (= (f lo) tgt) lo false)]

[else (local
((define p (floor (/ (+ lo hi) 2)))
(define f-of-midpoint (f p)))

(cond
[(< f-of-midpoint tgt) ; the tgt is in the right half
(binary-search-loop (+ p 1) hi f tgt)]

[(> f-of-midpoint tgt) ; the tgt is in the left half
(binary-search-loop lo (- p 1) f tgt)]

[else p]))])) ; p is the one we're looking for

12

Watch	this	work

(binary-search-loop 0 40 sqr 49)

= (binary-search-loop 0 19 sqr 49)

= (binary-search-loop 0 8 sqr 49)

= (binary-search-loop 5 8 sqr 49)

= (binary-search-loop 7 8 sqr 49)

= 7

13

p	=	20

p	=	9	

p	=	4	

p	=	6	

p	=	7	

What's	the	halting	measure?
• Proposed	halting	measure:	max(0,hi-lo)
– (the	size	of	the	search	region)

• Termination	argument:
– max(0,hi-lo)	is	always	a	non-negative	integer
– Must	check	to	see	that	max(0,hi-lo)	decreases	on	
every	recursive	call.
• At	every	recursive	call,	the	size	of	the	search	region	
decreases	by	at	least	1	(because	p	is	removed	from	the	
search	region).*

• So	max(0,hi-lo)	is	a	halting	measure	for	binary-
search-loop.

14

*	This	is	actually	subtle– see	
the	next	slide	for	details.

Checking	that	the	halting	measure	
decreases

• Let’s	try	the	first	case:
– We	have

• lo	<	hi															[that’s	 how	we	got	to	the	cond	clause]
• lo	≤	p	≤	hi									[that’s	how	we	chose	p]
• f(p)	<	tgt [that’s	 the	case	we	are	considering.]

– So	hi-lo	>	0,	so	max(0,hi-lo)	=	hi-lo.
– In	this	case	we	set	lo1	(the	new	value	of	lo)	to	be	p+1,	and	hi1,	the	new	value	of	hi,	to	be	equal	

to	hi.
– Now	we	can	calculate:

hi1-lo1	
=	hi-(p+1)						[substituting	values	of	hi1	and		lo1]
<	hi	– p										[since	p	<	p+1]
≤	hi	– lo							[since	lo	≤	p]

– So	(h1-lo1)	<	(hi-lo).
– If	hi1-lo1	≥	0,	then	max(0,hi1-lo1)	=	hi1-lo1	<	(hi-lo)	=	max(0,hi-lo)	
– If	hi1-lo1	<	0,	then	max(0,hi1-lo1)	=	0	<	hi-lo	=	max(0,	hi-lo)
– So	either	way,	we	have	max(0,hi1-lo1)	<	max(0,	hi-lo),	and	the	halting	measure	has	decreased.

• The	other	case	is	similar,	of	course.

15

Yes,	making	this	argument	bullet-proof	 is	
tricky.		But	this	merely	reflects	the	fact	it’s	
easy	to	write	sloppy	 binary	search	code	
that	will	sometimes	fail	to	terminate.	So	
either	way	you	have	to	be	careful.

Summary

• You	should	now	be	able	to:
– explain	what	binary	search	is	and	when	it	is	
appropriate

– explain	how	the	standard	binary	search	works,	
and	how	it	fits	into	the	framework	of	general	
recursion

– give	the	halting	measure	and	explain	the	
termination	argument	for	binary	search

– write	variations	on	a	binary	search	function

16

Next	Steps

• Study	the	file	08-4-binary-search.rkt	in	the	
Examples	folder

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	8.3
• Go	on	to	the	next	lesson

17

